

hivesigner-python-client

hivesigner-python-client is a simple yet powerful library to interact with the hivesigner. hivesigner
is a central-single sign on solution for HIVE based applications.

hivesigner implements Oauth2 for the authorization logic.

What can you do with this client?

	Implementing Authorization/Authentication flow through OAuth

	Broadcasting supported operations to the HIVE blockchain with the user of your app.

Installation

hivesigner-python-client requires python3.6 and above. Even though it’s easy to make it compatible
with lower versions, it’s doesn’t have support by design to keep the library simple.

You can install the library by typing to your console:

$ (sudo) pip install hivesigner

After that, you can continue with Getting Started.

Documentation Pages

	Getting Started
	Implicit grant flow

	Code authorization flow

	Creating your app on Hivesigner

	Redirecting user

	Using access tokens
	Getting authorized user’s information

	Updating user profile (metadata)

	Broadcasting operations

	Voting for a post

	Creating a comment/post

	Creating a comment/post with CommentOptions

	Follow an account

	Unfollow an account

	Mute an account

	Reblog a post

	Claim reward balance

	Delete comment

	Create custom jsons

	Hot signing
	Example: A transfer to emrebeyler with 1 HBD

	Example flask application

Getting Started

Hivesigner supports two different oauth flows for authorization.

Implicit grant flow

	You create an authorization link with your app’s client id and permission scopes.

	User visits the page (Hivesigner) and authorizes the application with the given permission scopes.

	Hivesigner returns user to the your app with a access token in the query string.

From that point, you can use this access token to broadcast operations on user’s behalf.

Code authorization flow

access tokens has a short TTL on Oauth standards. Every time a user has their token expired, you have two choices:

	Re-log the user and get a fresh token

	Add “offline” scope to the required scopes and get a refresh token to refresh the access tokens.

The second approach is required on some cases for the dApps and you will need to use Code authorization flow this.
When you add the “offline” scope to the required scopes, you will get a code instead of access token.

With this code, you can get new access tokens till forever. (As long as the user don’t revoke access of your app.)

Creating your app on Hivesigner

[image: _images/c2abea7ef549597d7ca0829fad45a08b2ce06f5b.png]

You need to register your app [https://hivesigner.com/dashboard] into Hivesigner before working with them. This will provide client_id and client_secret information which you will need to interact with the API.

Redirecting user

from hivesigner.client import Client

c = Client(
 client_id="app_name",
 client_secret="client_secret",
)

At this point, we need to redirect the user to Hivesigner for they to log in. That requires creating a URL.

auth_url = c.get_login_url(
 "http://callback.to.your.app",
 "login,vote",
)

	The first parameter is the callback URL when the user authorizes your app on Hivesigner.

	Second parameter defines the scopes you need.

Important

If you need to use the Code authorization flow, you need to pass get_refresh_token=True to this function. Also, “offline” scope is mandatory.

Once the user authorizes your app, Hivesigner will redirect the user to your app with an access token or code depending the flow you choose.
If you get a code in the query string, you can use this code to create access tokens for the specified user.

c.get_access_token(
 code,
)

Example output

{
 'access_token': 'access_token_string',
 'expires_in': 604800,
 'username': 'emrebeyler',
 'refresh_token': 'refresh_token_string'
}

If you use the Implicit grant flow, then you may skip this step.

Continue with Using access tokens to learn what can you do with the access tokens.

Using access tokens

Once you get the access token, you can create a new Client instance with just access_token.

c = Client(
 access_token="<access_token>",
)

Getting authorized user’s information

This api call gives information about the authorized user.

print(c.me())

Updating user profile (metadata)

metadata = {
 "profile": {
 "name": "Emre",
 "location": "Istanbul, Turkey",
 "about": "Developer, HIVE witness.",
 "profile_image": "http://foo.bar/image.png"
 }
}

resp = c.update_user_metadata(metadata)

Broadcasting operations

It’s possible to

	vote a post

	create a post/comment

	follow/unfollow/ignore/resteem

	claim reward balance

	delete comment

	create custom jsons

via steemconnect’s broadcast apis.

Note

All operations live inside the hivesigner.operations module. You need to import the corresponding classes before using them.

Voting for a post

vote = Vote("account", "author", "permlink", percent)
c.broadcast([vote.to_operation_structure()])

Creating a comment/post

comment = Comment(
 "author",
 "permlink",
 "body",
 title="test title",
 json_metadata={"app":"foo/0.0.1"},
)
c.broadcast([comment.to_operation_structure()])

Creating a comment/post with CommentOptions

comment = Comment(
 "author",
 "permlink",
 "body",
 title="test title",
 json_metadata={"app":"foo/0.0.1"},
)

comment_options = CommentOptions(
 parent_comment=comment,
 allow_curation_rewards=False,
)

c.broadcast([
 comment.to_operation_structure(),
 comment_options.to_operation_structure()
])

Follow an account

follow = Follow("follower", "following")
c.broadcast([follow.to_operation_structure()])

Unfollow an account

unfollow = Unfollow("follower", "following")
c.broadcast([unfollow.to_operation_structure()])

Mute an account

ignore = Mute("follower", "following")
c.broadcast([ignore.to_operation_structure()])

Reblog a post

reblog = Reblog("account", "author", "permlink")
c.broadcast([reblog.to_operation_structure()])

Claim reward balance

claim_reward_balance = ClaimRewardBalance('account', '0.000 HIVE', '1.500 HBD', '1132.996000 VESTS')
c.broadcast([claim_reward_balance.to_operation_structure()])

Delete comment

delete_comment = DeleteComment(
 "author", "permlink"
)
c.broadcast([delete_comment.to_operation_structure()])

Create custom jsons

custom_json = CustomJson(
 required_auth,
 required_posting_auths,
 id
 json_structure,
)
c.broadcast([custom_json.to_operation_structure()])

Hot signing

client’s hot_sign() method creates a SteemConnect specific URL which you can redirect users and expect them
to broadcast operations are not supported in the api. (transfer, create_delegation, etc.)

	
hot_sign(self, operation, params, redirect_uri=None):

	
	Parameters

	
	operation – String. Operation name. Ex: transfer.

	params – Dict. Operation data.

	redirect_uri – String. Optional. If you pass that, SteemConnect will redirect

the user to that URL after the operation succeeds.

Example: A transfer to emrebeyler with 1 HBD

url = self.c.hot_sign(
 "transfer",
 {
 "to": "emrebeyler",
 "amount": "1 HBD",
 "memo": "Donation",
 },
 redirect_uri="http://localhost"
)

Example flask application

This simple flask application redirects the user to steemconnect for the authorization. Once
the user authorizes your app, it calls /me endpoint and gives a warm welcome message with the “name” property of the user.

[image: _images/9ba32df5998328f40c7037d84db17655e60c03cf.gif]

from flask import Flask, request
from steemconnect.client import Client

app = Flask(__name__)

client_id = "your.app"
client_secret = "your_secret"

c = Client(client_id=client_id, client_secret=client_secret)

@app.route('/')
def index():
 login_url = c.get_login_url(
 "http://localhost:5000/welcome",
 "login",
)
 return "Login with SteemConnect" % login_url

@app.route('/welcome')
def welcome():
 c.access_token = request.args.get("access_token")
 return "Welcome %s!" % c.me()["name"]

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 hivesigner-python-client

 		
 Getting Started

 		
 Implicit grant flow

 		
 Code authorization flow

 		
 Creating your app on Hivesigner

 		
 Redirecting user

 		
 Using access tokens

 		
 Getting authorized user’s information

 		
 Updating user profile (metadata)

 		
 Broadcasting operations

 		
 Voting for a post

 		
 Creating a comment/post

 		
 Creating a comment/post with CommentOptions

 		
 Follow an account

 		
 Unfollow an account

 		
 Mute an account

 		
 Reblog a post

 		
 Claim reward balance

 		
 Delete comment

 		
 Create custom jsons

 		
 Hot signing

 		
 Example: A transfer to emrebeyler with 1 HBD

 		
 Example flask application

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/c2abea7ef549597d7ca0829fad45a08b2ce06f5b.png
". dshot.app e
‘ @dshot.app

This application is secured by SteemConnect.

Client Id: dshot.app

Client Secret: click to reveal

Revoke tokens

You can revoke all OAuth tokens if you want to invalidate the access of any
existing token for this Steem apps. You will have to grant permission again to
use it.

Revoke tokens

_static/ajax-loader.gif

_images/9ba32df5998328f40c7037d84db17655e60c03cf.gif
© (D ntpipocatnosts000f

1 htpiocalhost;5000 - teemConnect
2 hitpfocainost:600D/@armieoeylr - ocamost

D hitpiocalhost:5000pesses - steomocks

2 hitpifocainost 5000jenabeyer - steem rocks

D hips:.stesmeonnect comioauthziauthoizeTcont ig-dsht ppss
 hitpfocalhost:5000) - Google Search

Google

Search Google or type URL 0

- SteemConnoct

